

Monday 16 June 2014 – Morning

A2 GCE MATHEMATICS

4735/01 Probability & Statistics 4

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4735/01
- List of Formulae (MF1)

Other materials required: • Scientific or graphical calculator Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer **Book.** Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

1 A teacher believes that the calculator paper in a GCSE Mathematics examination was easier than the non-calculator paper. The marks of a random sample of ten students are shown in the table.

Student	А	В	С	D	Е	F	G	Н	Ι	J
Mark on paper 1 (non-calculator)	66	79	58	87	67	55	75	62	50	84
Mark on paper 2 (calculator)	57	84	70	90	75	42	82	72	65	82

(i) Use a Wilcoxon signed-rank test, at the 5% significance level, to test the teacher's belief. [7]

- (ii) State the assumption necessary for this test to be applied.
- 2 During an outbreak of a disease, it is known that 68% of people do not have the disease. Of people with the disease, 96% react positively to a test for diagnosing it, as do m% of people who do not have the disease.
 - (i) In the case m = 8, find the probability that a randomly chosen person has the disease, given that the person reacts positively to the test. [5]
 - (ii) What value of *m* would be required for the answer to part (i) to be 0.95? [4]
- 3 The discrete random variable *X* has probability generating function $\frac{t}{a-bt}$, where *a* and *b* are constants.
 - (i) Find a relationship between *a* and *b*.
 - (ii) Use the probability generating function to find E(X) in terms of a, giving your answer as simply as possible.[3]
 - (iii) Expand the probability generating function as a power series, as far as the term in t^3 , giving the coefficients in terms of *a* and *b*. [3]
 - (iv) Name the distribution for which $\frac{t}{a-bt}$ is the probability generating function, and state its parameter(s) in terms of *a*. [2]
- 4 The continuous random variable *X* has probability density function

$$f(x) = \begin{cases} x & 0 \le x \le 1, \\ 2-x & 1 \le x \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

(i) Show that the moment generating function of X is $\frac{(e^t - 1)^2}{t^2}$. [6]

 Y_1 and Y_2 are independent observations of a random variable *Y*. The moment generating function of $Y_1 + Y_2$ is $\frac{(e^t - 1)^2}{t^2}$.

- (ii) Write down the moment generating function of *Y*. [1]
- (iii) Use the expansion of e^t to find Var(Y). [5]
- (iv) Deduce the value of Var(X).

[1]

[1]

[1]

5 Two discrete random variables *X* and *Y* have a joint probability distribution defined by

$$P(X = x, Y = y) = a(x + y + 1)$$
 for $x = 0, 1, 2$ and $y = 0, 1, 2$,

where *a* is a constant.

(i) Show that
$$a = \frac{1}{27}$$
. [2]

(ii) Find
$$E(X)$$
. [2]

- (iii) Find Cov(X, Y). [5]
- (iv) Are X and Y independent? Give a reason for your answer.
- (v) Find P(X=1|Y=2). [2]

[2]

[3]

- 6 A Wilcoxon rank-sum test with samples of sizes 11 and 12 is carried out.
 - (i) What is the least possible value of the test statistic *W*? [2]
 - (ii) The null hypothesis is that the two samples came from identical populations. Given that the null hypothesis was rejected at the 1% level using a 2-tail test, find the set of possible values of *W*.[6]
- 7 The continuous random variable *X* has probability density function

$$f(x) = \begin{cases} \frac{k}{(x+\theta)^5} & \text{for } x \ge 0, \\ 0 & \text{otherwise,} \end{cases}$$

where k is a positive constant and θ is a parameter taking positive values.

- (i) Find an expression for k in terms of θ . [2]
- (ii) Show that $E(X) = \frac{1}{3}\theta$. [3]

You are given that $Var(X) = \frac{2}{9}\theta^2$. A random sample $X_1, X_2, ..., X_n$ of *n* observations of *X* is obtained. The estimator T_1 is defined as $T_1 = \frac{3}{n} \sum_{i=1}^n X_i$.

- (iii) Show that T_1 is an unbiased estimator of θ , and find the variance of T_1 .
- (iv) A second unbiased estimator T_2 is defined by $T_2 = \frac{1}{3}(X_1 + 3X_2 + 5X_3)$. For the case n = 3, which of T_1 and T_2 is more efficient? [4]

END OF QUESTION PAPER

Mark Scheme

Q	uestion	Answer	Marks	Guidance	
1	(i)	$H_{0:}m_1 = m_2$ $H_{1:}m_2 > m_1$	B1	Allow equiv hyps using differences.	NOT: marks NOT papers
				If in words, needs 'population'	NOT: mean
			M1,A1	1 st A1 is for correct differences.	
		9 5 12 3 8 13 7 10 15 2			
		6 3 8 2 5 9 4 7 10 1			
		$T^+ = 39; T^- = 16; T = 16$	A1	2^{nd} A1 is for correct T from correct ranks.	
		CV = 10	B1		
		$TS > CV$, do not reject H_0	M1	ft TS, CV	
		Insufficient evidence that the calculator	A1	ft TS	NOT: difference, unless clearly 2-tail
		paper was easier. oe		Contextualised, not over-assertive.	
			[7]		
	(ii)	Differences symmetrical	B1		
			[1]		
2	(i)	0.32×0.96 or 0.68×0.08	M1		Allow M marks for 0.8 instead of 0.08
			2.01		or incorrect 1-0.68.
		Both, added. $-0.2(1)$		Marchainerlied	
		= 0.3010 0.22 \times 0.06 \times "0.2616"	AI M1	May be implied.	
		$0.32 \times 0.96 \div 0.3016$		96	
		0.850	AI	Allow 0.85 or	
			[5]		
	(ii)	0.32×0.96 - 0.95	M1,A1	Allow 0.3072	
		$0.32 \times 0.96 + 0.68 \times p^{-0.95}$			
		Solve	M1	Allow failure to multiply brackets correctly,	
				but NOT divide instead of subtract or vv.	
		p = 0.0238, so $m = 2.38$	A1	192	
				1075	
			[4]		

Q	uestio	n	Answer	Marks	Guidan	ce
3	(i)		a-b=1 oe isw this part.	B1	Allow $\frac{1}{1} = 1$	Use $G_X(1) = 1$
					a-b	
				[1]		
	(ii)		(a-bt+bt)	M1	Use quotient or product rule.	NOT with $\frac{t}{a-at}$
			$(a-bt)^2$			
			Use $G'_{X}(1) = 1$	M1		
			a	A1		
				[3]		
	(iii)		Binomial expansion	M1	Ignore errors in setting up $(1+)^{(-1)}$ for	Or $t(1-b+b^2)+t^2(b-2b^2)+b^2t^3$
			$t bt^2 b^2t^3$	A2	A1 for 2 terms correct	
			$\frac{l}{a} + \frac{bl}{a^2} + \frac{bl}{a^3}$	112		
			u u u	[3]		
	(iv)		$\operatorname{Geo}(\frac{1}{a})$	B1,B1ft	$\frac{1}{(ii)}$ ft B1	
				[2]		
4	(i)		$\int_0^1 x \mathrm{e}^{tx} \mathrm{d}x + \int_0^2 (2-x) \mathrm{e}^{tx} \mathrm{d}x$	M1		
			$\left[\frac{xe^{tx}}{t}\right] + \left[\frac{-e^{tx}}{t^2}\right], \left[\frac{(2-x)e^{tx}}{t}\right] + \left[\frac{e^{tx}}{t^2}\right]$	M1	Int by parts, either integral.	No need for limits for this mark.
			$\frac{e^{t}}{2} - \frac{e^{t}}{2} + \frac{1}{2}$	A1		
			$t t^2 t^2$	A 2	A 1 for one error in 2^{nd} integral	
			$+\frac{s^{2t}}{s^2}-\frac{s^t}{s}-\frac{s^t}{s}$	AZ	AT IOI ONE ETIOI III 2 INTEGRAL.	
			$t^{\pm} t^{\pm} t^{\pm} t$	A1	cwo	
			$\frac{(c-1)}{t^2}$ AG			

Q	Questio	on Answer	Marks	Guidance
			[6]	
	(ii)	$e^t - 1$	B1	
			[1]	
	(iii)	$\frac{1}{t}\left(t + \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24} + \dots\right)$	M1	Need attempt at first 3 terms in brackets.
		$1 + \frac{t}{2} + \frac{t^2}{6}$	A1	Allow use of !
		$E(Y) = \frac{1}{2}$, $E(Y^2) = \frac{1}{3}$	B1ft	For both, ft coeff of t , $2 \times$ coeff of t^2
		$\operatorname{Var}(Y) = \frac{1}{3} - \frac{1}{4}$	M1	
		$=\frac{1}{12}$	A1	
			[5]	
	(iv)	$\frac{1}{6}$	B1ft	ft 2Var(Y)
			[1]	
5	(i)	<i>a</i> , 2 <i>a</i> , 3 <i>a</i> ; 2 <i>a</i> , 3 <i>a</i> , 4 <i>a</i> ; 3 <i>a</i> , 4 <i>a</i> , 5 <i>a</i>	B1	Allow $a(0+0+1)$, etc
		$a = \frac{1}{27}$ AG	B1	Must see (27a)oe=1
			[2]	
	(ii)	x 0 1 2	B1	oe
		$p \frac{2}{9} \frac{3}{9} \frac{4}{9}$		
		$E(X) = \frac{11}{9}$	B1	
			[2]	
	(iii)	<i>xy</i> 0 1 2 4	B1	Seen or implied eg by 3a+8a+8a+20a
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
		$E(XY) = \frac{39}{27}$, $E(Y) = \frac{11}{9}$ ft	B1,B1ft	$E(XY) = \frac{13}{9}$
		Use $Cov(XY) = E(XY) - E(X)E(Y)$	M1	

Question		n Answer	Marks	Guidance		
		$-\frac{4}{81}$	A1			
		01				
			[5]			
	(iv)	$C_{OV} \neq 0$	M1	ft non-zero Cov	$OR eg P(0,0) \neq P(0) \times P(0)$	
	(11)	No	Δ 1			
			[2]			
	(v)	<u>4</u> .12	M1	4a/12a		
	(.)	27 • 27				
		$=\frac{1}{3}$	Al			
			[2]			
6	(i)	$1 + 2 + \dots + 11$	M1	M0 if followed by incorrect work.		
		= 66	A1			
	(1)		[2]			
	(ii)	(N) (132,264)	B1	4.11		
		$\frac{(W+0.5-"132")}{}$	M I	Allow wrong, or no, cc.	Allow reversed if consistent $OP_{122}(0.5) + \pi x^2/264 M1$	
		√"264"			$OK 132(-0.3) = Z^{\times} \sqrt{204} M1$	
					(896[1734]) A1	
		<-	M1*	May be earned later.	< lower limit M1	
		2.576	B1	Allow 2.58	≤89 A1	
		Solve inequality	*M1	or equation if final answer uses $<$ or \le	Allow if lower limit only considered.	
		$< 89.6 (66 \le) W \le 89$	A1	Integer needed.		
			[6]			
7	(i)	$\int_{0}^{\infty} k(x+\theta)^{-5} \mathrm{d}x = 1$	M1			
		$k = 4\theta^4$	A1			
			[2]			
	(ii)	$\int_0^\infty 4\theta^4 x (x+\theta)^{-5} \mathrm{d}x$	M1	ft k.		
		Attempt int, by parts or sub'n.	M1			
		$=\frac{\theta}{2}AG$	A1			
		3	[3]			

Question	Answer	Marks	Guidance
(iii)	$\frac{3}{n}\sum_{i=1}^{n}X_{i} = 3\mathrm{E}(X) = 3(\frac{\theta}{3}) = \theta$	B1	or $\frac{3}{n} \times n \times \frac{\theta}{3}$
	$\operatorname{Var}(T_1) = 9\Sigma \operatorname{Var}(X)/n^2$	M1	or $\frac{9}{n^2} \times n \times \frac{2\theta^2}{9}$
	$=\frac{2\theta^2}{n}$	A1	76 2
	"	[3]	
(iv)	$\operatorname{Var}(T_2) = \frac{1}{9} \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \frac{25}{9} \operatorname{Var}(X_3)$	M1	Allow $Var(T_1)=3\sigma^2$ and $Var(T_2)=\frac{35\sigma^2}{2}$
	$=\frac{70\theta^2}{81}$	A1	
	$>\frac{2\theta^2}{3}$	M1	ft their Vars.
	T_1 is more efficient	A1	
		[4]	